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Flux
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+ Enzyme - E -- the biocatalyst

+ Metabolic flux - J
Net rate of conversion of one metabolic precursor to a

product
Based upon a material balance:
d[B]/dt = J.-J.

+ Fluxes reflect integration of genetic and metabolic
regulation




Metabolic Flux Analysis

Fluxes are obtained using material balances
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Models and measurements
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Stoichiometric model has /m unknown
fluxes and 77 internal metabolite
balances

I
v v v

m=n | M=n m<n
more complex networks | simpler networks
1
Insufficient number I | Sufficient (or greater)
of measurements. I'| number of measurements.
Multiple solutions. I'| Unique flux distribution.

How do we choose the “true” solution?

90 l Red numerals are fluxes.
Blue names are metabolites.

Hypothetical flux map, for purpose of illustration.
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Choose a solution that Add internal measurements
optimizes a logical (GC-MS, NMR).
cellular objective. Expensive, but more accurate.
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1 metabolite
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GC-MS vs 2D NMR

2D NMR

2 metabolites
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http://www.biotech.biol.ethz.ch/sauer/

13C Labeling Data

(from proteinogenic amino acids or metabolites)
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Flux estimation is difficult in plants

N
» Plasticity
Compartmentation:

Parallel pathways, G6P

different fluxes PSP
+ Different tissues FoF pentoseP Fel pentoseP

pathway pathway
+ Cell types within tissues glycolysis glycolysis
cytosol plastid




In vitro culture for

developing soybean embryos

carbon-labeling experiment

N

=Extract protein, starch,
oil.

=Obtain NMR spectrum
of hydrolyzed protein
and starch

»Analyze spectrum, use
mathematical model to
obtain metabolic fluxes.

growth chamber In vitro culture

=Biomass accumulation
146 mM sucrose (10% U-13C sucrose)| =Substrate and product

37 mM glutamine rates

vitamins, micronutrients, pH=5.5) =Biomass composition
="HPLC analysis of

protein




Sample Pre
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paration

Extract protein

protein I_l

Hydrolyze in 6N HCI

AAs + 6N HCI I—l

Rapidvap™ in vacuum

AAs (powder)

—

Dissolve iIn NMR solvent

AAs in DCY/D.,0 pH 0.5

2D [*H, 'H], 3D [HCCH]
TOCSY spectra

~IHSQC spectrum

peak assignments

Fluxes




Metabolic network
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(Recent literature; Singh, 1999; Soybase; KEGG encyclopedia)




13C fine structures
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—— BCattachedto2C Q@ <— |7 singlet

Most likely formed by a biosynthetic bond between a 13C and a *C molecule

13C attached to 3¢ @) = [|— doublet

|, Most likely formed from an intact 13C molecule

- Different metabolic histories

Relative abundance of doublets and singlets represents
the relative concentrations of intact and biosynthetic bonds
in the same metabolite molecule (e.g. different pathways)




Isotopomer
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substrate mixture metabolite
sucrose (13C, 12C) + glutamine (*2C) e.g. T3P
1 2 3
RN 1-1-1, T3P,
LN | 1-1-0, T3P
Isotopomers of T3P S
P R 0-1-1, T3P,
I | 0-1-0, T3P,



2-D [13C,1H] HSQC spectrum
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Multiplets and Isotopomers

A
\

Peak fine structure shows
multiplets

D1

Multiplets are proportional to
Isotopomers
singlet
+ 12C-13¢-12¢
doublet
+ 12C-13C-13C
+ 13C-13C-12C
double doublet
+ 13C-13C-13C




Flux evaluation methodology
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+ 156 isotopomers were
measured

+ Isotopomer abundances
are related to fluxes

+ Relationship is nonlinear
and nontrivial to solve

+ A computational framework
was developed to
automatically convert raw
data to fluxes

1 2 3

13C-13C coupling
indicates intact
bonds

13C-12C coupling
indicates broken
bonds

Natural abundance
needs to be
considered

Exact models can be
constructed




Flux evaluation methodology
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= |I. Guess fluxes

= | singular value decomposition '

Q! Poor comparison.

g : Refine earlier guess for fluxes.
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é ' | I1. Simulate III. Compare simulated Good Statistically
: . - comparison.
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Computer program, NMR2flux (C, Red Hat Linux)
A posteriori model modification is possible



Strategy to

Identify segregation of pathways
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Hexose phosphates are segregated
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Flux map
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Sriram et al.2004. Plant Physiology, 136, 3043-3057.
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tatistical analysis of evaluated fluxes
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Takes into account experimental error of NMR measurements




Fluxes,
reversibilities, std. deviations

N

Reaction g Net flux | Reversibility
Hame Stoichiometry Mean | SD | Mean | SD Comment
lycolysis and oxPPP
hxi i€ G6P* — F6P° - N
-113.4( 18.0 51.8| 26.7 ‘. G6P"
{ il F6P* & GEP Flux is in the direction F6P*—G6P
hxi ? G6P? — F6P° e oo
-43.4| 50.2 97.0 3.2 P_G6PP
{ fixd P F6PP . G6P° Flux is in the direction F6P"—G6P
hxi ¢ G6P — F6P -156.8| 57.3 - —|Combined Ax/ flux (cytosol+plastid)
G6P¢ — P5P° + CO, 107.9( 45.7( irrev. —
GEP? — P5PP + CO, 129.3( 58.9| irrev. =T
G6P° — P5P + CO, 237.0{ 52.0| irrev. —|Combined pg/ flux (cytosol+plastid)
C C — = C
P5PC + PSPC S7P° + T3Pc 291 30l 904l 179
S7P° + T3P° — PSP + PSP
P P p P
P5P" + PSP S7P" + T3P 646 17.8] 88s| 146
S7P° + T3P° — PSP? + PSPP
C C C
TP + T3P — PGP + B4 | o1 30l 467 251
F6P° + E4P° — S7P  + T3p°
P P, P p
sipe b — Feb- B sae| «za| 762 16
F6PP + E4P°P — S7PP + T3PP
C C —3 C C
P5Pc i E4Pc F6P" + T3P 72l 3.0 6.7 10.9
F6PC + T3P° — P5P° + E4P°
P P, P P
e B = e TP ol dvE|  ae| Eo
F6P° + T3PP — PSP” + E4PP
pk© F6P° — T3P + T3pP° 14.3| 17.3| irrev. —
prk? F6PP — T3P" + T3P° 81.4| 20.6| irrev. —
prk F6P — T3P + T3P 95.7| 16.9| irrev. —|Combined pfk flux (cytosol+plastid)
po€ T3P + T3P° — F6P° 3.7 43| irrev. —_
fl6bp” T3P" + T3P — F6P° 257.5| 59.3| irrev. —
gap T3P — 3PG 267.4| 16.8 n.d. —|For gap, eno and pyk, cytosolic and
eno 3PG — PEP 253.5| 16.8| n.d. —|plastidic fluxes are indistinguishable. There-
pyk PEP — Pyr 219.4| 13.4( n.d. — fore, only combined fluxes are reported.
pdh” Pyr? — ACA? + CO, | 136.0( < 1.0[ irrev. —
pdh™ Pyr™ — ACA™ + CO, 66.3| 16.0{ irrev. —




Simulation and
experiment
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Reductive PPP
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Reductive PPP
compartmentation

N

L/

<+ Reductive PPP fluxes negligible in cytosol (7.4 + 3.0
units), substantial in plastid (64.6 + 17.8 units)

<+ Consistent with genetic and enzymatic data from
several higher plants:

Arabidopsis genome lacks cytosolic genes for reductive PPP
(Eicks et al., 2002)

Spinach and pea did not contain cytosolic enzymes for
reductive PPP (Debnam and Emes, 1999)

+ Reductive PPP may not be present in the cytosol in
most plants (Kruger and von Schaewen, 2003)



Network Addition of
Fructose-1,6-bisphosphatase
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A posteriori model modification




Flexibility and Rigidity of Nodes

®) P5PT (from cytasol)
I bioss'® g [~=S7PO—" 4P
gor . GoPY
hudpy| uaFh
(o EDSPLE
HH
oXPPP node for MH temp. condition oxPPP node for HH temp. condition

(Case 1- MH, MM, ML) (Case 2- HH, MM, LL)

RIGID FLEXIBLE
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E. coli

Anaerobic Metabolism

Challenges:
Smaller flux to biomass

Many products

Less rearrangement —
TCA cycle incomplete.

2 For _fdh ,

L
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Acetate/Ethanol - ——>




Ildentifiability of fluxes with
two labelled compounds
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Summary

N

L/

+ Implemented a carbon labeling experiment to
evaluate compartmented fluxes

+ Developed a computational framework to aid
In flux evaluation

Computer software (NMR2flux) to evaluate
fluxes, reversibilities, and confidence
Intervals




Larger Networks

N

L/

+ Network Topology

» Extracellular, biomass, composition
measurements

+ Metabolite profiling/retrobiosynthetic
approach

» Effective methods for analyzing isotopomer
abundances

+ Choice of label for identifiability of fluxes
+ Uncertainty or range in flux estimates
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Isotopomer balance

N

L/
V., -STPP[123xxxx]- T3P?[123]+V, , - G6P"[123456]

0=
+Vv. . -T3P°[123]- T3P"[123]+V

f 16bpP tkiB

-P5PP[12xxx]- E4P?[1234]

— {fokbp -F6PP[123456] + Vinip -F6P?[123456] + v, g -F6PP[123456] + Viemp -F6P? [123456]}

+ Our network had 564 balances, and 33
unknowns.

<+ However, balances for all isotopomers
(whether measured or not) Iin the
metabolic network must be written and
solved to calculate fluxes.



Boolean function mapping

N

+ What: A method to convert reactant isotopomers to product isotopomers
automatlcally (Sriram G., and J. V. Shanks, 2004, Metab. Eng).

+ How: Metabolic reactions can be represented by the following schema:

R1 + R2 — P1 + P2 (overall reaction)
R1.--R1R + R2L-R2R — P1L-P1R + P2L-pP2R (typical carbon

skeleton rearrangement)

<+ We recognize four moves in this schema, which are represented as Boolean

functions:
Fragmentation R1 — R1-R1R
Reversal R1R — R1R (occasional, e.g. F6P — T3P reaction,
fumarase reaction)
Transposition RIR — P2t

Condensation P2L-P2R — P2




e
Example: transaldolase

reaction

N
\J

+ Assume reactant isotopomers are Sy, (0111101) and G; (011)

+ Manual isotopomer enumeration shows that E,; (1101)
and F,, (011011) should result.

| Boolean function

Se1 mapping I
G3 Fa7

L
=
w

+ 67% time reduction compared to existing methods (Wiechert er a/, 2001).
+ Time/iteration (soybean network) = 0.48 s on a 3 GHz pentium.
Sriram, G., and Shanks, J. V., ‘Improvements in metabolic flux analysis using carbon labeling
experiments: bondomer balancing and Boolean function mapping.’ Metab. Eng., 2004.

return



Boolean function mapping

Sriram, G., and Shanks, J. V., ‘Improvements in metabolic flux analysis using carbon
labeling experiments: bondomer balancing and Boolean function mapping.’ Metab.
Eng., 2004

N

L/

<+ In the ta/reaction, let us assume we have Sg; (0111101) and G5 (011) as the
reactants. From inspection, we should expect to get E, (1101) and F,,

(011011).

S7P + GAP — E4P + F6P (a))
X=0

R1L [1M2W3m4msM6M7|R1R [10(2]3] R2R
X=3
P1L (1 M2E3M4] p2L1 M2 W34 M5 H6| P2R

<+ When the Boolean/arithmetic functions are executed, we get:
Fragmentation: R1- =61 /24 =3 (011), R1R =61 % 24 = 13 (1101);
R2L = NULL, R2R = 3 (011)
Transposition: R2R = 3 (011) becomes P2R = 24 (00001); 3 (<<)3 =24
Note: Now P1t = R1R = 13, P1IR = 0; P2t = R1t = 3, P2R = 24.

Condensation: P1 = P1t + P1IR=13 + 0 = 13 (E,; = 1101);
P2 = P2t + P2R=24 + 3 = 27 (F,, = 011011).

return



Optimization module

N

<+ Minimization of error
between experimental and
simulated intensities.

+ Simulated annealing routine
was developed (global
optimization).

<+ Downhill simplex algorithm
was used near the optimum
(local optimization).




Plastidic Pyruvate Node
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Figure 9

Pyr crossroad for MH temp. condition




