Metabolic Engineering of Yeasts
for Ethanol Production from
Biorefinery Hydrolysates

Thomas W. Jeffries
USDA, Forest Service, FPL and
University of Wisconsin, Madison



Metabolic engineering Is
essential for the commercial
fermentation of xylose

Xylose Is the second most
abundant carbohydrate in nature

It Is readily recovered from
lignocellulosic residues

It Is not fermented to ethanol with
commercial rates and yields



Ethanol production from corn
IS growing rapidly

The US ethanol industry produced
about 3.4 billion gallons of ethanol in
2004

This was a 21% increase over the
2.81 billion gallons in 2003...

which in turn was 31% higher than
production in 2002



Only 10% of corn grain goes
Into fuel ethanol production
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Each ton of grain results in 1 ton of residue,
which is about 35% by weight xylose

Source: USDA and industry




Additional biomass could
obtained from wood
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Biorefining sugars from hardwoods
Hardwood :
could add value to the pulping process
82 0 ' ' '
o 60% | Hemicellulose | Fractionation Acetic acid 7504,
= hydrolysate
S
T
| Pretreated | Hemicellulosic 95%
cellulose sugars
Kraft pulp Other products Ethanol PHA
* Little heating value from HC » Higher loading on digester

» Lower chemical use » Generates new product streams



Where IS our metabolic
engineering work going?

Analyzing genomic content and expression
 Pichia stipitis genome complete

Engineering whole pathways

« Multiple (3 to 7) gene expression
Optimizing metabolic flux

» Multiple promoter optimization

Understanding regulatory networks
« Conducting genechip experiments



FPL research has developed
Improved yeasts for fermentation

Ethanol production increases If
respiration Is reduced

Patents on engineered P. stipitis and
S. cerevisiae have been filed

Working with logen for commercial
Implementation



Major findings

Transcript
expression level
affects the
accumulation of
Intermediates

Over expression of
some enzymes can
be toxic

Effect of over
expression depends
on the genetic
background

Multiple genes
contribute to
optimal growth and
fermentation



Xylose and arabinose metabolism
engineered In Saccharomyces
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Over-expression of XYL3
Inhibits growth on xylose

Expression vector Host strain S. cerevisiae 679 (Trp)
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D-xylulokinase activity increases
with promoter and copy number
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Xylulokinase over expression Is toxic
to cells during xylose metabolism

Xylulokinase
Copy / ..
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Integrating copies of XYL3 gave
optimal low expression

Hpal
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ST' [ GAPDH promoter
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Yeast transposon element

T XYL3 1 [ G418 resistance gene

pITyX3 *

Three copies of XYL3 were introduced



Four growth conditions were
used for expression analysis

Conditions

Glucose

Xylose

High aeration

Low aeration
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Most transcript changes were for
energy production and growth

Pair-wise comparisons
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Transcript levels changed
with carbon source and

aeration

Expressed as a ratio of
abundance on xylose
divided by abundance on
glucose (X/G)

Changes of less than 2-
fold were not considered
significant (white boxes)

Red means higher on
glucose; green means
higher on xylose

Dark (left) is under high
aeration; light (right) is
under low aeration
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Ethanol production increases
In a petite mutant of YSX3
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Shi21(cycl-A) shows higher ethanol yield
and specific fermentation rates

Fermentation CBS 6054 FPL-UCY FPL-Shi21
parameters (wild type) (ura3) (cycl-A)
Biomass yield (g-g1) 0.16 0.17 0.09
Ethanol yield (g-g1) 0.41 0.38 0.46
Specific ethanol

production rate 0.04 0.03 0.06
(9-g *-h?)

Specific xylose 0.11 0.09 0.13
uptake rate (g-g *-h'1)




Oxygen limitation and xylose
Induce fermentation in P. stipitis
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Other accomplishments:

|dentified mutations
that relieve the toxic
effect of xylulokinase
over expression

Identified additional
genes that relieve the
toxic effect when over
expressed in
engineered cells

In cooperation with DOE
JGI, sequenced the 15
Mbp P. stipitis genome
Developed an efficient
transformation and marker
recovery system for P.
stipitis

Identified missing genes in
P. stipitis that could
contribute to anaerobic
growth and ethanol
tolerance



Social impact of this research

Expand the resource base for
renewable transportation fuels

Increase farm incomes through higher
value use of residues

Increase the profitability of hardwood
pulping in the U.S.

Increase employment opportunities In
rural regions
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Yeast metabolic network
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(MAT leu2-3 leu2-112 ura3-52
trp1-298 cant cyn1 gal+)

Transposon

mutagenesis O
Parental strain L2612 hES —.
transformed with a (URA3)

plasmid over
expressing XYL1,2,3 ]
ransposon

This genotype does Library (LEU2)
not grow on xylose

Transposon mutated
. : Selectforgrowth _____ 5, Cure from
library was introduced on xylose PYES X123 24

and resulting Leu* |
Recover Tn mutation

transformants were (plasmid rescue)/

screened for growth -
Restriction to Re-transform

Two Speciﬁc genes recover mutant —> to confirm phenotype
were identified

does not grow on xylose

————>»  Sequence



HXK1, FBP1, GND2 and TKL2 are
Induced on xylose
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Transcripts for TCA and respiration
are induced on xylose - especially
under oxygen limitation
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S. cerevisiae engineered for
xylose metabolism

Requires oxygen for growth on xylose

Induces transcripts for respiration on
xylose

Petite mutants of engineered yeast
show Iincreased fermentation

Petite mutants do not grow on xylose
Want to better understand limitations



